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Abstract
We study various scattering properties of topological solitons in two classes of
models, which are the generalizations of the Sine–Gordon model and which
have recently been proposed by Bazeia et al. These two classes of models
depend on a positive real nonzero parameter n but in this paper we consider the
models only for its integer values as when n = 2 (for the first class) and n = 1
(for the second class), the model reduces to the Sine–Gordon one. We take
the soliton solutions of these models (generalizations of the ‘kink’ solution of
the Sine–Gordon model) and consider their scattering on potential holes and
barriers. We present our results for n = 1, . . . , 6. We find that, like in the
Sine–Gordon models, the scattering on the barrier is very elastic while the
scattering on the hole is inelastic and can, at times, lead to a reflection. We
discuss the dependence of our results on n and find that the critical velocity for
the transmission through the hole is lowest for n = 3.

PACS numbers: 03.75.LM, 05.45.Yv

1. Introduction

Solitons, as solutions of nonlinear wave equations have, by now, been studied extensively for
many years [1]. However, they are still producing new and unexpected phenomena. Such is,
for instance, their behaviour when one sends a soliton towards a potential obstruction as was
studied in [2, 3]. The results presented in these papers were obtained for solitons in (2+1)
dimensions and for the Sine–Gordon model in (1+1) dimensions.

In a recent study [4], we looked at a similar scattering of solitons in two (1+1)-dimensional
ϕ4 models. In these models we have inserted potential obstructions in two different ways, in
each case modifying the Lagrangian of the model in a region far away from the soliton. In
the first model this modification was introduced via the coupling of the potential (which was
made position dependent), while in the second model this was achieved via the modification
of the Minkowski spacetime metric [5].
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In each model, like in [2] and [3], the topological solitons were found to scatter on the
barrier in a very elastic way: they can either overcome the barrier and get transmitted or get
reflected from the barrier with almost no loss of energy. However, the scattering from a hole
was found to be inelastic and, at times, produced an almost non-classical behaviour as solitons
with energies below a critical value for the transmission could either be trapped in the hole or
get reflected! This reflection resembles a little the quantum reflection and so, perhaps, some
classical phenomena based on solitons could be confused with their quantum behaviour.

In view of this we have decided to look at other models; to see whether the observed
phenomena are ‘universal’. A good class of such models is provided by the models of Bazeia
et al [6]. Not only they depend on a parameter (which takes integer values); they also
reduce to the well-known Sine–Gordon model for a specific value of this parameter. Hence
in this paper we look at the scattering of solitons in these models on both potential holes and
potential barriers. Like in the original work on the Sine–Gordon model [3] the obstructions
are introduced via the modification of the coupling constant in the models i.e. by making it
space dependent.

In the following section we introduce the models of Bazeia et al [6] and discuss some of
their properties. We present the relevant Lagrangians (for both classes of generalizations of
the Sine–Gordon model) and discuss their soliton (kink-like) solutions. The following two
sections discuss our results on the scattering of these solitons (from each class) on both types
of obstructions. We finish the paper with a short section presenting our conclusions.

2. The models of Bazeia et al

We consider, in full generality, a single real scalar field in (1+1) dimensions

� = 1
2∂µϕ∂µϕ − Ṽ (ϕ), (1)

where the potential Ṽ (ϕ) is taken in the form

Ṽ (ϕ) = λ̃2V (ϕ),

in which λ̃ = 1 + λ(x).
Here λ(x) is an extra potential parameter which has been inserted into the potential Ṽ (ϕ)

to take into account the effects of obstructions, holes and barriers, and so is nonzero only in a
certain region of space.

In our case, we put the obstruction around the origin (i.e. x = 0) so we take

λ(x) =
{

0 |x| > 5
λ0 = constant |x| � 5.

The equation of motion is, of course,

∂µ∂µϕ + Ṽ ′(ϕ) = 0, (2)

where Ṽ ′ is the derivative of Ṽ with respect to the argument.
The models of Bazeia et al [1] correspond to choosing (‘type I’ models) Ṽ of the form:

Ṽ (ϕ) = 2λ̃2

n2
tan2(ϕ)(1 − sinn(ϕ))2. (3)

When n = 2 this model reduces to the Sine–Gordon one.
The second class (‘type II models’) corresponds to taking Ṽ in the form

Ṽ (ϕ) = λ̃2

2n2
ϕ2−2n sin2(ϕn). (4)

In this case the Sine–Gordon model corresponds to n = 1.

2
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Both classes of models are topological as in each case we can write for the static fields:

� = − 1
2∂xϕ∂xϕ − Ṽ (ϕ) = − 1

2 (∂xϕ ±
√

2
√

Ṽ )2 ± 1√
2
∂xϕ

√
Ṽ . (5)

The last term is a total divergence and so we observe that the equation for the static
solitons (Bogomolny’i equation) becomes

∂xϕ = ±
√

2
√

Ṽ (ϕ). (6)

The solutions of (6) are easy to find in the case when we have no obstruction (i.e. when
λ̃ = 1). They are given by (for the first class of models)

ϕ(x, t) = sin−1

[
exp(2λ̃γ (x − x0 − ut))

1 + exp(2λ̃γ (x − x0 − ut))

] 1
n

, (7)

where, due to the Lorentz invariance of the full Lagrangian (1), we have inserted the time
dependence by performing the relativistic boost. In (7) γ is the usual relativistic factor,
i.e., 1√

1−u2 . Expression (7) is, in fact, a solution of (6) when λ̃ = 1. It is also an approximate

solution of (6) when λ̃ �= 1 for x0 far away from the region in which λ̃ �= 1.
The soliton solutions (7) satisfy the kink boundary conditions

ϕ (x → −∞) −→ 0, ϕ(x → ∞) −→ π

2
.

For the second class of models the soliton solutions (again with the same comments about
the x dependence of λ̃) are given by:

ϕ(x, t) = [2 tan−1(exp(λ̃γ (x − x0 − ut)))]
1
n , (8)

and they satisfy the following boundary conditions:

ϕ (x → −∞) −→ 0, ϕ(x → ∞) −→ π
1
n .

In figures 1 and 2 we present plots of the static soliton field configurations for the type I
and type II models, respectively, for the first six models in each class, i.e. for n = 1, . . . , 6.

In the following section we look at the scattering properties of these solitonic solutions in
the first class of models.

3. Solitons scattering of type-I potentials

Before we consider the scattering properties of the solitonic solutions let us observe that the
mass (rest energy) of a static soliton is given by

Mrest =
∫ ∞

−∞

[
1

2
ϕ2

x + Ṽ (ϕ)

]
dx. (9)

The energy of a soliton moving with velocity u, far away from the obstruction i.e for which
λ̃ = 1, is then given by

E = Mrest√
1 − u2

. (10)

To calculate Mrest we note that it can be rewritten as

Mrest(n) = 4

n2

∫ ∞

−∞

W
2
n (1 − W)2(
1 − W

2
n

) dx, (11)

where W is

W = exp(2x)

1 + exp(2x)
.

3
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Figure 1. Type-I models: soliton fields for n = 1, . . . , 6.
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Figure 2. Type-II models: soliton fields for n = 1, . . . , 6.

To perform the calculation of (11) it is convenient to change variables from x to r = W
1
n .

Then (11) becomes proportional to Sn i.e.

Mrest(n) = 2Sn, where Sn = 1

n

∫ 1

0

r(1 − rn)

1 − r2
dr. (12)
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Figure 3. Type-I potentials: rest mass energies for n = 1, . . . , 6.

This integral defining Sn can be performed explicitly for each value of n. We find that

S1 = 1 − ln 2, S2 = 1
4 (13)

and all others satisfy the recurrence relation

Sn+2 =
[
nSn +

1

n + 2

]
1

n + 2
. (14)

In figure 3 we plot the rest mass energies for n = 1, . . . , 6. The figure shows that solitons
become less massive as n increases. The figure also shows that the n = 1 soliton is very
massive.

It is worth mentioning here that the rest mass energies are in complete agreement with
the results reported in [6]. Next we considered the scattering properties of these solitons. To
do this we put our obstructions close to x = 0 (in fact between −5 and 5) and initially placed
solitons far away from x = 0, namely around −40 sending them with some velocity u towards
the obstruction. In our numerical work we used the square well potential barriers and holes
of width 10. The width was chosen carefully so that the solitons can fit into the potential hole
and have enough space to move inside the hole or on the top of the barrier. The simulations
were performed using the fourth-order Runge–Kutta method of simulating the time evolution.
We used 1201 points with the lattice spacing of dx = 0.01. Hence, the lattice extended from
−60 to 60 in the x-direction. The time step was chosen to be dt = 0.0025. In our work we
used the absorbing boundary conditions.

3.1. Hole scattering

Our simulations have shown that, like in the previous work on the Sine–Gordon [3] and λφ4

[4] models, for any n, there is a critical velocity above which the solitons are transmitted by
the hole and below which they are either trapped or reflected. See also [7] and [8] which

5
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Table 1. Ratios of Eradiation/Evibration for different values of n.

n Eradiation/Evibration

1 0.760 50
2 0.070 69
3 0.053 82
4 0.077 11
5 0.081 20
6 0.097 52.

present earlier work on this subject with an interesting explanation of the reflection property
of the hole in terms of the interference of the soliton field with the radiation waves generated
by the scattering.

Hence we believe that the observed phenomenon is a generic behaviour of topological
solitons as they encounter a potential hole. The value of the critical velocity depends on the
model in question. The scattering is inelastic with the soliton emitting radiation both in the
hole and/if when it has left the hole.

The amount of the emitted radiation is expected to be related to the integrability, or not,
of the model in question. Hence to study this further we have decided to look in detail on
the emission of radiation in the models of Bazeia et al. Thus we have examined in detail the
scattering properties of solitons for n = 1, . . . , 6.

First we looked at the values of the critical velocity for the hole of depth = −0.50
(i.e. λ0 = −0.5). Figure 4 gives the plot of these values and we note that the critical velocity
is the lowest for n = 3.

In order to have a better understanding of our results on the critical velocities, we have
looked at the energy of solitons after the scattering when they are already far away from the
hole. The total energy of the solitons after the scattering is given by

Efinal = Mrest√
1 − u2

out

+ Evibration + Eradiation. (15)

We have estimated the ratios of the radiation to the vibrational energies. Table 1 presents
the results of our calculations. This can easily be done when the soliton is close to the boundary
as then most of the radiation energy has already been absorbed. The radiation energy can be
estimated by taking the difference between the energy before the scattering and the energy
after the scattering when the soliton is close to the boundary. The vibration energy which
decays very slowly can be estimated by subtracting from the total energy the energy of the
moving soliton and the radiation energy. Then, the ratio is easily obtained by dividing the
radiation energy by the vibrational energy.

The table does not clearly exibit any regular pattern for this ratio which would have
encouraged us to seek a deeper understanding of the mechanism of this process (in terms of
possible equipartition of energy, etc). Unfortunately, the results of the table suggest that any
an explanation will be difficult to find. We do note, however, that in the n = 3 this ratio is
the smallest. This shows that in this case the solution preserves more of its extra energy as a
vibrational energy and so has it available when the soliton tries to come out of the hole. Hence
the critical velocity is also the lowest for n = 3.

We have also looked at the behaviour of solitons as they approach this hole (of −0.5 depth)
with velocities above the critical values, i.e. when they get transmitted. Figure 5 presents the
plots of the time dependence of the positions of these solitons for u = 0.5 and u = 0.7. One
sees very clearly that for velocities well above its critical value all solitons behave almost in
the same way. In each case the velocity of the transmitted soliton is almost the same (but, of

6
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Figure 4. Type-I models: critical velocities of soliton solutions for a hole of −0.5 depth; first six
models.

course, always lower than the initial velocity). The only exception is the n = 1 case when
the transmitted soliton has considerably lower velocity—but then for n = 1 u = 0.5 is not
that far away from the critical velocity for this model. Hence we conclude that for velocities
significantly above its critical value the velocity of the transmitted soliton does not depend
much on n.

In figure 6 we show the plots of vout as a function of vin for n = 1, 2, 3. We observe
that vout is less than vin, the curves for n = 2, 3 are very similar and that as vin increases the
scattering becomes more elastic and so vout becomes closer to vin.

We have also looked at the energy loss of the transmitted soliton. In this case some energy
is radiated away when the soliton is in the hole. When it emerges it is excited—i.e. some of
its energy is converted into the excitation energy which is then slowly radiated away as the
soliton moves away from the hole.

To confirm these expectations we have looked at the velocity of the soliton after it has left
the hole and at its total energy. Thus, for example, looking at the soliton of the n = 3 model
moving towards the hole we note that its total energy is given by

Ein(3) = Mrest(3)√
1 − u2

in

= 0.427 6888√
1 − 0.52

= 0.4928. (16)

After the scattering the observed velocity of the soliton is 0.439 99. For such a velocity
(assuming that there is no excitation) the total energy would be

Eout(3) = Mrest(3)√
1 − u2

out

= 0.427 6888√
1 − 0.439 992

= 0.476 266. (17)

However, the observed energy of the system, after the soliton has left the hole, was pretty
much the same as the initial energy, i.e. 0.4928. The difference between these two energies,
i.e. 0.016 53, must be the excitation energy of the soliton and of the radiation that has been
emitted during the scattering process, which has still not been able to reach the boundaries of

7
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Figure 5. Type-I models: trajectories of solitons for velocities above their critical values;
i.e. u = 0.5 and u = 0.7 for a hole of depth −0.5.

our grid (we absorb at the boundaries). In fact, the soliton radiates away this excess of energy
all the time so that only asymptotically its energy will drop to the value corresponding to its
velocity, i.e. 0.476 266.

However, this process is very slow and the soliton reaches the boundary before its energy
exibits a significant drop. Hence to study this effect we have decided to look at a static soliton
in the hole (which would be excited as its ‘profile’ (determined by λ̃) is not correct).

We have looked at the case of a soliton for n = 1. Its energy is 0.417. When we have
placed it inside a hole of depth = −0.4 we have found that its energy is

Mrest(1) = 4

n2

∫ ∞

−∞

W 2(1 − W)

(1 + W)
dx = 0.368 223, (18)

as this time W is given by

W = exp(1.2x)/(1 + exp(1.2x)).

Thus this soliton inside the hole is excited and so it radiates away its excess of energy.
This process is quite slow as shown in figure 7, where we plot the time dependence of the
energy of such a soliton. We note that although the energy has dropped quite a lot even at
t = 1000 it is still significantly above its asymptotic (expected) value i.e. 0.368 223.

How does the total excitation + radiation energy depend on n? This we show in figure 8
which presents a plot of the n dependence of the difference between the observed total energy
(just after the soliton left the hole) and the energy of a moving soliton after the scattering for
the case when the soliton’s incoming velocity was 0.6, which is far away from their critical
value, for a hole depth of −0.5.

3.2. Scattering on a barrier

The previous work [2, 3] has found that the scattering of topological solitons on potential
barriers is very elastic (i.e. very little energy was emitted and the solitons behaved like point

8
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Figure 7. Type-I models: the n = 1 soliton’s final energy inside a hole of −0.4, u = 0.0.

particles). Thus if the solitons had enough energy to ‘climb’ to the top of the potential barrier
they were transmitted; otherwise they were reflected.

This is very much what we have seen in the models of Bazeia et al. When we looked
at the barrier of height 0.08 the outgoing and the incoming velocities of the solitons were

9
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Figure 8. Type-I models: soliton excitation energy after the scattering from a hole of −0.5,
u = 0.6.

essentially the same (within numerical errors). This was seen for all n that we have looked at,
i.e. n = 1, . . . , 6.

Thus, we conclude that, like in all previous cases, the scattering of topological solitons
on barriers is almost totally elastic.

Next we calculated the critical values of velocity, as a function of n, for the scattering on
a barrier of height 0.4. Our results are presented as a curve shown in figure 9.

Once again, i.e. for the hole, we see that the critical value is the lowest for n = 3. Hence
the n = 3 model is somewhat special—its critical velocities are lowest both for the scattering
on a hole and on a barrier.

As there is very little radiation and the scattering on barriers is very elastic the critical
velocity can be estimated by approximating solitons by point particles.

The critical velocity, vcr, is the velocity that a soliton has to have so that it can climb the
barrier; if the scattering is fully elastic this can be estimated by looking at the energy of the
soliton at rest on the top of the barrier Ecr(n).

This energy is then approximately equal to the energy of a soliton away from the barrier
moving with velocity vcr.

Thus

Ecr(n) ∼ Mrest(n)√
1 − u2

cr(n)

.

The critical energy is almost equal to the rest mass energy of solitons at the top of a barrier.
So,

Ecr(n) ∼ MB(n),

10
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Figure 9. Type-I models: critical velocities for the soliton solutions on a barrier of 0.4 height for
the first six models.

Table 2. Properties of kinks in models of type-I.

n Mrest Ecr ucr

1 0.6137 0.8592 0.699 861
2 0.5000 0.7000 0.699 854
3 0.4268 0.5975 0.699 859
4 0.3749 0.525 0.699 857
5 0.3361 0.4705 0.699 864
6 0.3056 0.4278 0.699 858

where MB(n) is the rest mass energy of a soliton at the top of the barrier. Thus the critical
velocity is given by

ucr(n) =
√

1 −
(

Mrest(n)

Ecr(n)

)2

. (19)

In figure 10 we present the numerically calculated rest masses, for n = 1, . . . , 6 of the
solitons at the top of a barrier of 0.4 height.

Given these values we can calculate the approximate values of the critical velocity
and compare them with the actual values determined numerically. The results are in close
agreement.

Table 2 shows the calculated critical velocity for the soliton solutions of the first six
models (i.e. for n = 1, . . . , 6). We have not used the numerical values of the critical energies
because solitons at the top of a barrier, with a zero velocity, are excited and so their energies
are marginally higher than their critical values.

Clearly, both sets of values of critical velocities are in a very good agreement. At the
same time, the facts that the approximate value is lower, but only marginally so, and the value

11
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Figure 10. Type-I models: n dependence of the rest masses of solitons for a barrier of height 0.4.

of this difference, shows that the radiation effects are very small though, strictly speaking,
nonzero.

4. Soliton scattering in the type-II potentials

We have also looked at the scattering of solitons on holes and barriers in the second class of
models of Bazeia et al. Most of the behaviour was very similar to what was seen in the first class
of models (i.e. the existence of critical velocities, transmission and reflections on barriers, etc).
But there were also some small differences. Hence here we restrict our discussion to the
description of these differences.

The main reason for these differences resides in the form of the soliton field itself, and the
fact that, as shown in figure 2, the fields are very asymmetric with respect to their behaviour as
x → ±∞. Clearly as n increases the fields go to different, and decreasing values as x → ∞.
Similarly, as n increases, they go to zero much more slowly. Hence the energy densities of the
solitons are more spread out, as shown in figure 11.

Moreover, like for the first class of models, the rest masses of solitons decrease with n,
but this time this decrease is faster. In figure 12, we present the rest mass energies of solitons
as a function of n. Clearly, we see a big decrease as n increases.

As we will show below the tail of solitons in class II models, except for n = 1 when the
model reduces to the Sine–Gordon one, affects the behaviour of solitons when they scatter on
a potential hole. The effect increases with n as for larger n solitons are more spread out and
also are less massive.

In figure 11 we plot the energy densities of the soliton solutions of type II models. We
only plot them for n = 4, 5 and 6 as the energy densities for lower values on n are much larger
so that plotting them all together would make the plots of larger n almost invisible.

12
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Figure 11. Type-II potentials: static energy densities for n = 4, 5, 6.
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Figure 12. Type-II potentials: rest mass energies for n = 1, . . . , 6.

A note on the normalization. As we said before the n = 2 type I model and n = 1 type II
one are the same—in fact they both correspond to the Sine–Gordon model. However, our values
of their enegies are different (in the type I case the rest energy is 0.5, while in the type II it is 2.0).
The difference comes from the different normalization of both models (ϕ → 2ϕ).
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Figure 13. Type-II models: critical velocities for the soliton transmission through a hole of −0.5
depth for the first six models.
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Figure 14. Type-II models: critical velocities for the soliton transmission over a barrier of 0.4
height for the first six models.

Figures 13 and 14 present the plots of the critical velocities when the solitons are scattered
from a hole of −0.5 depth and a barrier of 0.4 height, respectively.
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Figure 15. Type-II models: energy of a trapped soliton for n = 6.

4.1. Tail effect in hole scattering

The tail, as we have observed in our numerical simulations, is the main part of the solitons that
is the most affected when the solitons are scattered on a hole. More precisely, our simulations
have shown that the front part of the soliton is less affected by the hole while the tail, which
is its rear part, is more affected by it. This is due to the asymmetry of the soliton field
configuration which generates this asymmetry of the energy density of the soliton. Thus, for
example, the energy radiated by the soliton comes mainly from the tail. When the velocity of
the incoming soliton is close to its critical value the tail gets badly deformed and the energy
radiated from the tail is large. Below the critical velocity, i.e. when the soliton gets trapped
inside the hole we have sometimes observed that the peak of the radiated energy is greater than
the maximum of energy density of the soliton itself. In such cases one might even observe a
false quantum-like reflection. This false reflection can be observed numerically unless one is
careful and looks at the fields in some detail. While the soliton is inside the hole the magnitude
of the back radiation may suggest its reflection. Only careful analysis of such a case would
clarify the situation. In one case, to be absolutely certain what has happened, we had to make
the hole very wide to be certain that the soliton remained trapped in it. This was the case, for
example, when we looked at the n = 6 model and the soliton was sent with velocity v = 0.3
towards a hole of depth −0.5. This soliton got trapped inside the hole and radiated away a
very large amount of radiation. Figure 15 shows the energy density seen in this case when
the radiated energy which has travelled backwards is higher than the main energy of soliton
which is trapped inside the hole. One can also see from this figure that the front part of the
soliton has not shown any significant deformation while the tail part of the energy density has
been deformed greatly and has given off almost all the radiated energy.

We have also observed that in the cases when the velocity is below its critical values the
front part of the soliton including its centre of mass can exit the hole while the tail still remains

15



J. Phys. A: Math. Theor. 41 (2008) 315206 J H Al-Alawi and W J Zakrzewski

inside it. Then, because the tail has remained in the hole, the soliton gets pulled back into the
hole and so remains trapped inside it. Furthermore, the tail effect has also been seen for the
anti-kink solitonic configurations. The behaviour of both systems is quite similar with only
minor differences.

5. Conclusion

We have considered two classes of topological soliton models, presented by Bazeia et al [1]
which are generalizations of the Sine–Gordon model. Both classes depend on an integer
parameter n which, for the type I models reduces to the Sine–Gordon model when n = 2,
while in the type II case the Sine–Gordon case corresponds to n = 1. Both classes of models
have shown a behaviour which is similar to what was observed in the Sine–Gordon case in
some recent research work, namely that the scattering by a hole is inelastic while the scattering
by a barrier is nearly elastic. During the scattering on barriers the solitons behave very much
like point-like particles. Their initial kinetic energy is converted into the potential energy
needed to overcome the barrier and there is very little energy left to excite the internal degrees
of freedom of the soliton. This has been confirmed by our estimates of the critical velocities
for the transmission over the barrier which is based on this assumption. We have shown this
to be true in all models (i.e. for all values of n).

The scattering on the holes is different. When a soliton enters a hole it gains an extra
energy which is then, in part, converted into the energy of internal oscillations. This is again
seen for all the models we have looked at. Why this extra energy is used this way is not
completely clear at the moment. We have tried to find an explanation in terms of equipartition
of energy etc, but have not managed to prove that this is really the case. Hence this explanation
is still lacking and our results have shown that this is a general phenomenon as the excitation
of the internal degrees of freedom takes place in all the models studied by us and is more or
less similar in magnitude.

We have also seen that the energy of solitons after the scattering is distributed differently
into the vibrational and radiation energies. And so the soliton which converts most of its
extra energy into the vibrational energy, rather than the radiation energy, is more able to be
transmitted over the obstruction with the least velocity.

Solitons of the type-II models, except for the Sine–Gordon case (n = 1), have
asymmetrical field configurations and have exhibited what we have called the tail effect
in their scattering on potential holes. The perturbation due to the potential hole has an uneven
effect on the body of solitons. While it produces very little deformation or the radiation in the
front part of the solitons, their tails are greatly deformed and most of the radiation is produced
there too. When the initial velocities of the solitons are close to their critical values, the
radition energy, which is sent backwards, is very large and often more peaked than the energy
density of the soliton itself. This could easily lead to some misunderstanding of what has
happened; i.e. one may think that one has observed a quantum-like reflection while in reality
this was only a trapping accompanied by some radiation sent backwards.

Solitons, in some cases, behave like particles because of their localized structure.
However, because of their extended structure they deviate from their particle behaviour in
other cases. The symmetrical or asymmetrical field configurations play a great role on how
the perturbations affect the solitons and the amount of radiation that is produced.

When a topological soliton (corresponding to λ̃ = 1) is placed inside a potential hole it
has an extra energy. This energy is then transferred into its vibrational energy but some of it is
radiated off. Moreover, when we looked at the energy of solitons scattered by a hole we have
found it to be almost the same as the energy of the solitons before the scattering although the
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final solitons were moving with somewhat smaller velocities. This implies that the scattering
generated very little radiation (i.e. also when the solitons were in the hole) and that most
of the extra energy was converted into the vibrational/excitation energy of the solitons and
suprisingly little was sent off as radiation.

We have also observed that for the n = 3 type I model, the critical velocity is the least for all
the cases we have looked at when considering the scattering of a soliton on a hole of −0.5 depth
or on a barrier of 0.4 height.
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